
The following excerpt is from the book:

Serial Port Complete
COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems
Second Edition

Jan Axelson

Copyright 1998, 1999, 2000, and 2007 by Janet L. Axelson

All rights reserved.

Published by Lakeview Research LLC

ISBN 978-1931448-06-2

For more about the book and serial-port design and programming, visit:

www.LVR.com

 1

�

�������	
��	������

A serial port is a computer interface that transmits data one bit at a time. In
common use, the term “serial port” refers to ports that use a particular asyn-
chronous protocol. These ports include the RS-232 ports on PCs and many
serial ports in embedded systems. Most serial ports are bidirectional: they can
both send and receive data. Transmitting one bit at a time might seem ineffi-
cient but has advantages, including the ability to use inexpensive cables and
small connectors.

In PCs, applications access most serial ports as COM ports. Applications that
use Microsoft’s .NET Framework class library can use the SerialPort class to
access COM ports. Some USB devices function as virtual COM ports, which
applications can access in the same way as physical serial ports. Some Ethernet
and Wi-Fi devices function as serial servers that enable applications to access
serial ports over a network.

Microcontrollers in embedded systems can use serial ports to communicate
with other embedded systems and PCs. Language compilers for microcontrol-
lers often provide libraries with functions that simplify serial-port program-
ming.

Chapter 1

2

��������	
�������������
Device developers have many options for computer interfaces. Table 1-1 com-
pares popular wired interfaces.

Serial ports are ideal for many communications between embedded systems or
between embedded systems and PCs. Serial ports can also be a good choice
when you need very long cables or a basic network among PCs, embedded sys-
tems, or a combination. Some systems include a serial port that is hidden from
users but available to technicians for debugging and diagnostics.

��������	

These are some advantages of asynchronous serial ports and COM-port pro-
gramming:

• Serial ports can exchange just about any type of information. Applications
suited for serial ports often involve reading sensors, switches, or other inputs
or controlling motors, relays, displays, or other outputs.

• The hardware is inexpensive and readily available. PCs that don’t have
built-in serial ports can use USB/serial converters. Just about every micro-
controller family includes variants with built-in serial ports.

• Other than the Start, Stop, and optional parity bits added to each transmit-
ted byte, serial interfaces assume nothing about the content of the data
being transmitted. In contrast, USB and Ethernet use sophisticated proto-
cols that define the format of transmitted data. Hardware or firmware must
implement these protocols, adding complexity that some applications don’t
need.

• Cables can be very long. An RS-232 interface can use cables of 130 ft or
more. An RS-485 cable can be over 4000 ft. In contrast, the maximum dis-
tance between a USB device and its host is 16 ft, or 98 ft with five hubs.
Ethernet cables have a maximum length of 328 ft.

• The cables are inexpensive. Many links can use unshielded cables with 3–9
wires.

• For devices that connect to PCs, Windows and other operating systems pro-
vide drivers for accessing COM ports. Programming languages provide
classes, libraries, or other tools for COM-port communications.

Options and Choices

 3

Table 1-1: Comparison of popular computer interfaces. Where a standard doesn’t
specify a maximum, the table shows a typical maximum.
Interface Format Number of

Devices
(maximum)

Distance
(maximum,
ft)

Speed
(maximum,
bps)

Typical Use

RS-232
(TIA-232)

asynchronous
serial

2 50-100 20k (faster
with some
hardware)

Modem, basic
communications

RS-485
(TIA-485)

asynchronous
serial

32 unit loads
(up to 256
devices with
some
hardware)

4000 10M Data acquisition
and control
systems

Ethernet serial 1024 1600 10G PC network
communications

IEEE-1394b
(FireWire 800)

serial 64 300 3.2G Video,
mass storage

IEEE-488
(GPIB)

parallel 15 60 8M Instrumentation

I2C synchronous
serial

40 18 3.4M Microcontroller
communications

Microwire synchronous
serial

8 10 2M Microcontroller
communications

MIDI serial current
loop

2 (more with
flow-through
mode)

50 31.5k Music,
show control

Parallel Printer
Port

parallel 2 (8 with
daisy-chain
support)

10–30 8M Printer

SPI synchronous
serial

8 10 2.1M Microcontroller
communications

USB asynchronous
serial

127 16 (up to 98
ft with 5
hubs)

1.5M, 12M,
480M

PC peripherals

Chapter 1

4

• A USB device accessed as a COM port doesn’t have to have an asynchronous
serial interface. The device can have a parallel or other interface as needed to
suit the application.

• Wireless technologies enable transmitting serial data without cables.

����

No single interface is ideal for every purpose. Limits to asynchronous serial
interfaces include these:

• The computers at each end must convert between the transmitted serial data
and the CPU’s parallel data bus. The conversion is usually handled automat-
ically by hardware, however.

• The specified maximum bit rate for RS-232 is 20 kbps. But many interface
chips can exceed this rate, and RS-485 supports speeds of up to 10 Mbps.
Communications between a PC and a USB Virtual COM ports aren’t lim-
ited by RS-232’s maximum bit rate.

• Windows doesn’t promise real-time performance for serial communications.
Sending or receiving data may need to wait as the operating system attends
to other tasks. But the delays are normally short and are common to other
interfaces on Windows systems. Embedded systems typically can control the
scheduling of serial communications more precisely.

��
�������������

Communicating via serial ports requires three things: computers with serial
ports, a cable or wireless interface that provides a physical link between the
ports, and programming to manage the communications.

��	������	�

Just about any computer can use serial-port communications, including inex-
pensive microcontrollers and PCs that don’t have built-in serial ports.

�������	
��
�����
����	

Devices with asynchronous serial ports typically contain a hardware component
called a Universal Asynchronous Transmitter/Receiver (UART). The UART
converts between parallel and serial data and handles other low-level details of
serial communications.

Options and Choices

 5

These are some examples of ports controlled by UARTs:

• Microcontroller serial ports. Many microcontrollers contain one or more
UARTs for serial-port communications. When a hardware UART isn’t avail-
able, microcontroller firmware can emulate a UART’s functions, typically
with assistance from an on-chip timer.

• External UART chips that interface to microcontrollers or other CPUs.
• The RS-232 serial ports that were standard on PCs and other devices before

USB became common. Each of these ports contains a UART that interfaces
to the system’s CPU. Any PC with a free expansion slot can add this type of
port on an expansion card.

• RS-232 ports on PC Cards (also called PCMCIA cards). Any PC with a free
PC-Card slot can use these.

• Serial ports that connect to PCs via USB converter modules.
• Other serial ports used in long-distance and networking applications, often

in industrial-control applications. These interfaces include RS-485, RS-422,
and RS-423. Expansion cards, PC Cards, and USB converters with these
interfaces are available.

• Ports on serial-server modules that connect to Ethernet or Wi-Fi networks.

On PCs, ports that applications can access as COM ports include these:

• RS-232 ports on older motherboards or on expansion cards.
• Ports that connect to a PC via a USB converter that uses a driver that assigns

a COM port to the device. Converters are available as modules and as chips
for incorporating into circuits. A converter can convert between USB and
RS-232, RS-485, TTL serial, or even a parallel interface.

• Internal modems that interface to phone lines.
• Serial ports on network serial-server modules.

For USB virtual COM-port devices, Windows includes a driver for USB’s com-
munication devices class (CDC). For improved performance, some converters
use vendor-specific drivers in place of the provided Windows drivers.

��������
����	

Computers that communicate via serial ports don’t have to be all the same type.
Tiny microcontrollers can talk to the latest PCs as long as both ends of the link
use compatible interfaces and protocols. The PC examples in this book are for
the family of computers that has evolved from the IBM PC, including desktop

Chapter 1

6

and notebook PCs. Other computer types also have serial ports that are built in
or available via converters or expansion cards.

An embedded system is a computer-controlled device dedicated to performing
a single task or a set of related tasks. Embedded systems are typically built into,
or embedded in, the devices they control. For example, a modem is an embed-
ded system that handles tasks of data communications over the phone system.
Some embedded systems are one-of-a-kind or small-quantity projects. Many
involve monitoring or control tasks.

Embedded systems often use microcontrollers, which contain a CPU and I/O
hardware such as UARTs. Microcontroller chips can be classified by data-bus
width: 8-bit chips have an 8-bit data path and are popular in monitoring and
control applications. Chips with 4-, 16-, and 32-, and 64-bit data buses are also
available. Different chips have different combinations of features and abilities,
including asynchronous and synchronous serial ports, USB controllers, type
and amount of memory for storing programs and data, and support for
power-saving modes.

��	����
���������

The physical link between computers consists of the wires or other medium
that carries information from one computer to another and the connectors and
other components that interface the medium to the computers.

RS-232 links can use just about any cable type and require one line per signal
plus a common ground line. RS-485 networks typically use twisted-pair cables
with a pair for each differential signal. Other options for serial communications
include fiber-optic cable, which encodes data as the presence or absence of
light, and wireless technologies, which enable sending data as electromagnetic
(radio) or infrared signals through the air.

Computers connected by wires must have a common ground reference, typi-
cally provided by a ground wire in the cable.

���������

A computer must perform the following tasks in serial communications:

• Detect and process received data.
• Provide and send data as needed.
• Carry out any other tasks the computer is responsible for.

Options and Choices

 7

If the connection is to a serial network, each computer must ignore communi-
cations intended for other computers in the network and comply with network
protocols for addressing transmitted data to the appropriate computer(s).

Program code carries out these tasks, often with help from hardware.

��������	

The programming for a serial interface can use any language, and the language
doesn’t have to be the same on every computer. The only requirement is that all
of the computers must agree on a format. Microcontroller programs might
access UART registers directly or use library functions or other higher-level
methods to set communications parameters and exchange data. PC applications
typically use higher-level functions to access ports.

��������	

A protocol is a set of rules that defines how computers manage communica-
tions. Serial communications must implement a low-level communication pro-
tocol and may also implement a higher-level message protocol.

��������	
������
�����

A communication protocol defines how the bits travel, including when a com-
puter can transmit, the bit rate, and in what order the bits transmit. The UART
typically handles the details of sending individual bits and storing received bits
on the serial port.

Two computers that want to exchange data must agree on whether both ends
can transmit at once or whether the computers need to take turns. Most wired
links between two computers are full duplex: both computers can transmit at
the same time. Many wireless links are half duplex: the computers must take
turns. A simplex link is one way only. A network with three or more computers
sharing a data path must use a protocol that defines when a computer can trans-
mit.

A communication protocol can include the use of status and control lines.
These lines can indicate when a transmitter has data to send or when a receiver
is able to accept new data. The process of exchanging this information is called
flow control. Hardware flow control uses dedicated lines for the signals. Devices
can also use software flow control to provide the same information by sending
defined codes, typically in the same path used for data.

Chapter 1

8

Additional status and control lines can provide other information such as the
presence of a carrier frequency or a ring signal on a phone line. In serial net-
works where only one transmitter can be enabled at a time, a transmit-enable
line at each computer can enable and disable the transmitters as needed.

����	�����
�����

Serial communications often exchange messages that consist of blocks of data
with defined formats. A message protocol can specify what type of data a mes-
sage contains and how information is structured within the message.

The computers in a network need a way to detect which computer is the
intended receiver of transmitted data. Networks typically assign an address to
each computer and include the receiver’s address in each message. For example,
a very basic message might consist of two bytes: one byte to identify the receiver
and one byte containing data.

To enable a receiving computer to detect the start and end of a message, a mes-
sage can include codes to indicate these events or a header that stores the mes-
sage length. A message can also include one or more bytes that the receiving
computer uses in error checking.

�����������

One way to think about serial applications is by the primary direction of data
flow. In a link between two computers, one computer might gather data from
or send commands to the other computer. Or two computers may each be
responsible for various monitoring and control functions, sharing information
with each other.

In some systems all computers send and receive more or less equally. In others,
most of the data flows to or from a central computer. For example, most of the
activity in a network might involve one computer that collects data from com-
puters in remote locations.

�����	���
�	

An everyday example of a system that collects data is a weather-watching net-
work. A desktop PC might serve as a primary computer that controls the activ-
ities of one or more secondary computers, which can be embedded systems or
PCs. The primary computer sends commands to the secondary computers to
tell them how often to collect data, what data to send, and when to send. The
data collected might include temperature, air pressure, rainfall, and so on. At

Options and Choices

 9

intervals, each secondary computer sends its collected data to the primary com-
puter, which stores the data and makes it available for viewing and processing.
This basic setup is adaptable to many other types of data-gathering systems.

Other systems are mainly concerned with controlling external devices, rather
than gathering data from them. A store-window display might include a set of
small robots, each with switches and signals that control motors, lights, and
other mechanical or electrical devices. Each robot is an embedded system, and a
primary computer controls the show by sending commands to the robots. The
robots can also return information about their current states, but the main job
of this type of system is to control devices, rather than to collect information
from them.

An example of a system involved with both monitoring and controlling is a
home-control system that monitors temperature, humidity, motion, switch
states, and other conditions throughout a house. Other circuits control the
home’s heating, cooling, lighting, audio and video systems, and alarms. When
the data (or a lack of data) indicates a problem, the system generates an alarm.

��������������������

In each of the examples above, one computer typically acts as a primary com-
puter that controls a series of secondary computers. A secondary computer
transmits only after the primary computer contacts it and gives it permission.

Some networks have no primary computer. Instead, each computer has equal
status with the others, and each can request actions from the others. For exam-
ple, each computer might transmit in a defined sequence. Or on receiving a
message, a computer might have permission to select any other computer to
transmit to.

��	����������
	������	

Many common peripheral functions are available as modules with serial inter-
faces. These modules make it easy to add a function to a design. For example,
LCD modules with serial interfaces are available from Scott Edwards Electron-
ics (www.seetron.com). The USBwiz from GHI Electronics (www.ghielectron-
ics.com) contains a USB host controller and makes it possible to access USB
devices via an asynchronous serial port. Motor controllers with serial interfaces
are also available from a variety of sources.

Chapter 1

10

These are just a few examples. This book will guide you in choosing compo-
nents and writing programs for whatever serial-port application you have in
mind.

